
rAOeO O 3~~~~~WA SSACHU S ETTS INSY OF TEcH cAM BRIDGE LAB FO
~~~~~

FO RH
~~

!TC F,G I?/I
COM B IN IN G AND OF LOCAL EST A
NOV 79 A S W I

LJNCLASS IFIEO LTOS P 9SS 
LLSKY . M BELLO, 0 

AFOS R—T R—:o—O::O NL I

______________ 
—

~~~~~~~ END
FILV E 0

- 2—SO
floG



I 1
~ II~12~ ~II2~

~ ~ lI~
2.2

I I’  ~~~

~ 
1.25 IIIU~ . Iliul

MICROCOPY RESOLUTION TEST CI-I~qT
NAT K~ 1AL BUREAU Of STANDARUS -~963~~



—~ ~~J LI*.u...~~ - ~~ ~~~~~~~ 
~~~~~

UNCLA8SIF!F~ r IS’ECURITY fl ON OF TI4I S PAGE (W hen Date Entered)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ACCL 
~~~~~~~~~~~~~~~~~~~~~~~~~~

4 TITL E’ ’ JJ • ~ TYPE OF EP T & ~~~~ RIQO CCS~/EREO

\....‘~* EGIONAL MAP S ALONG NETS 0F_QNE4)IMENSIONAL f Interim r~~�+~
(~ 

~~~~~~

OMBINING AND UPDATING OF~.J.~OCALASTIMATES AND _____ ~~
JRACKS . ~~~~~~~~~~ 

~~~~~~~~~~ 

NUMB ER

AU T HOR(s) 
~~~ 

uIl n e —(_j  —

•~ ~: ~~~ ~: ~~~ r~~~~~~~e ~~~~~~~~ I
D. A. Castanon 

~J 
AFOSR—77—3281

9. PERFORMING ORGANIZAT ION NAM E AND ADDRESS I ~~~~~~~~~~~~~~~ ELEMENT. PF~~JECT . TA SK
AREA & UNIT NUMBERS

~~~ Massachusetts Institute of Technology /
Lab. for Information and Decision Systems , ‘7 ~~~~~~Cambridge, MA 02139 61102 23,~~ Al.

II. CONTROLLING OFFICE NAME AND ADDRESS °‘g

( 1 J Nov_l... .L1791
~

~~~ Air Force Office of Scientific Research/NM
Boiling AFB , Washington, DC 20332

~~~~~~

4. MONITORING AGENCY NAME & ADDRESS(iI different from Controllln4 Office) IS. SECURITY CLASS.  (of this report)

UNCLASSIFIED
ISa . DECLASS IF ICATI ON/OOW NGRAD Ip i G

16 DISTRIBUTION STATEMENT (of this Rope

Approved for  public release; distribution unlimited .

17. DISTRIB U r~~n .,,. .~~~. apsrrs r ror.p in uroc,ri,~~~ii d iffe rent from Report)

~~~~~v )r k L_ . 
~~~~ flfl r ~?~

_ _ _ _  _ _  _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  JAN_31 1980
(_) I~~. SUPPLEM NTA RY V ES .1 i I I I

4 ~~ C /L~ ~ I IUI~~ [.6u U i~
/ A

15. KEY WORDS (Continue on reverse side ii necessary and identify by block number)

C.,

S.- L/ 10 9S 0 ,2iw~20. ABSTRACT (Continue on r.vers, aide Ii necessary and identify by block number)
In this paper we consider the problem of combining and updating estimates

tha t may have been generated in a distributed fashion or may represent esti-
mates, generated at different times, of the same process sample path. The
f i r s t  of these cases has applications in decentralized est imation, while the
second has applications in updating maps of spatially-distributed random quanti’
t ies given measurements along several tracks . The method of solution for the
second problem uses the result of the f i r s t , and the simila ity in t for#la.
tio: :nd s:lution of these problem s ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~ ~~
. -



— - .~~ 

-

~~~

-- — -

~~~~~~

S 
a

— U~1CI~ASSI,F1LED
SECURITY r A SSIFIC T.ION OF T~NIS PAOE(ITh.fl Data Entered)

20. Abstr. ~t Con ’t .
between many problems in dec entral ized control and in the analysis of
rand om fields.

I UNCLASSIFIED 
- —

—~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— “ 

~~
-
~~

— ‘
~~~

—— ‘
~~~~~~~ ~~~~. .~~~ ~~~~~~ -— ~

. 
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



- .-~~~~~~~- - - ~~~~~~-~~~‘ - -~~~~~~ -‘ - - --

November 1979 LI D S— P—955

0 0 8080 -

COMBINING AND TJPDATI~~ OF LOCAL ESTIMATES AND REGIONAL —

MAPS ALONG SETS OF ONE-DIMENSIONAL TRACKS

a

Alan S. Willsky*
Martin Bello** . 

- - -

David A. Castan ‘ 
.

Bernard C. Levy _____

George Verghesett —~~ - :“~~~ _____

ABSTRACT

In this paper we consider the problem of combining and updating
estimates that may have been generated in a distributed fashion or may
represent estimates , generated at different times , of the same process
sample path. The first of these cases has applications in decentralized
estimation, while the second has applications in updating maps of spatially-
distributed random quantities given measurements along several tracks .
The method of solution for the second problem uses the result of the first ,
and the similarity in the formulation and solution of these problems
emphasizes the conceptual similarity between many problems in decentralized
control and in the analysis of random fields .

* 

—

Laboratory for Information and Decision Systems and the Department of
Electrical Engineering and Computer Science , M.I .T . ,  Cambridge , MA. 02139 .
The work of this author was performed in part at The Analytic Sciences
Corporation , Reading , MA. , and in part at M.I • T. with partial support provided
by the Air Force Office of Scientific Research under Grant APOSR—77—328 1B.
* * 

.—_—.--—.----__ -.-. _-_-

Laboratory for Information and Decision Systems and the Department of Electrical
Engineering and Computer Science , M.I .T . ,  Cambridge , MA. 02139 . The work of
this author was performed in part at The Analytic Sciences Corporation , Reading,
MA., and in part at The M • I • T. Lincoln Laboratory .
t
~~~oratory for Information and Decision Systems and the Department of Electrical

Engineering and Computer Science , M.I .T. ,  Cambridge , MA. 02139 . The work of
these authors was performed at M.I .T .  with support provided by the Office of
Naval Research under Contract ONR/N00014—76—C—0346.
ft
Electric Power Systems Engineering Laboratory and Department of Electrical

Engineering and Computer Science , Cambridge , MA. 02139

Approved for p~b1tO 1 1SM~~

L ~~~~~~~~~~~~~~~~~~~~~ 1
OU I ~~UI A

- —— p p ~~~~~~~~ ~~~~~ — -—-—S - a—



-— ‘r - - — ...- “- ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..— _. _ ,_ ._~~~~ _.__ -- .

—2—

I. INTRODUCTION

The research reported in this paper was motivated by the following

problem in the mapping of two-dimensional random fields , that is spatially

distributed random quantities . Measurements or surveys of the field are

collected at different t imes along sets of one-dimensional tracks across

the field. The sets of tracks may differ from survey to survey . Either

a local or regional map is generated for each of these surveys and the

problem is either to combine these local maps optimally , or to

update an overall map as each new survey becomes available . Problems of

this type arise in many applications including the mapping of vertical tem-

perature profiles of the atmosphere given data provided by satellites (1]

and the mapping of anomalies in the earth’s gravitational field and the

effects of such anomalies on errors in inertial navigation systems (2 ,14].

The problem posed in the preceding paragraph is not solved completely

in this paper, but a special case of it is in which the tracks are all

parallel and the field along the direction of the tracks can be modeled by

a finite dimensional linear shaping filter driven by white noise. In ad-

dition to solving this special case and to providing insight into the

general case , the solution we obtain is of independent interest in that it

provides a procedure for optimally updating smoothed estimates as more data

is collected. Furthermore , one of the principle steps in our develoilnent is

the construction of the optimal combined filtered (i.e. causal) estimate

from several Local filtered estimates . This is basically a problem in

~~~~~~ p~~ f l ,~~~~~ .~S’ ’ ’

— . - - -. -- --—-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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decentralized filtering, and our results extend those of Speyer (3] and

Chong (7] .

In the next section we present and discuss the solution to the problem

of combining decentralized filtered estimates, while Sections III contains

the description and solution of the problem of updating smoothed estimates .

In Section IV we apply the results of the preceding section to the problem

of real-time smoothing , that is , of estimation given a previous smoothed

estimate and new real-time data . The paper concludes with a discussion in

Section V.

II. COMBINING DECENTRALIZED FILTERED ESTIMATES

2.1 Formulation and Solution of the General Case

Consider a linear dynamical system driven by Gaussian white noise

x(t )  A ( t )x ( t )  + w(t )  (2.1)

E(w ( t )w(t ) ’]  = Q( t )I S(t—T) (2.2)

where w(t )  is independent of x (O) which is taken to be a zero mean

Gaussian random variable with covariance ~ (0) .  Suppose we have two sets

of white noise-corrupted observations

y
1
(t) = C1(t) x(t )  + v1(t) (2.3)

y2 (t) = C2
(t )x (t )  + v2 (t) (2.4)

where v1 and V2 are independent of each other and of w and x(O) , with

E(v~ (t) v~ ( t ) ’]  = R~ (t)ó(t—t) , i=1,2 (2.5) 

, _ .. 
~, . - .- ‘~~~~

“ j ~~ ~~~~~~~~~~~ ~~~~~~~~

- ,~ ~~~~~~~~ ar~d isr :--
~ ~ .! .- - -

~~. 
, ~~~~ ~~~ ~~~ ~~~~12 (7b).
.

~~3
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The two sets of measurements (2.3),(2.4) can be thought of as representing

observations taken at different locations in a distributed system or at

different nodes in a network of interconnected systems. These observations

are processed separately to produce local filtered estimates, and we wish

to consider the problem of recovering the overall optimal filtered estimate

~ (t~t) = E {x(t)~ y1
(s) ,y 2

(s) ,  s<t} (2.6)

in terms of these local estimates. If this can be done, then much of the

raw data processing can be done locally without any loss in global per-

formance . In addition, if local filtering is performed on the data , we may

reduce the required bandwidth for transmission of information to a cen—

• tralized processor. A problem of this type was considered by Speyer (3]

in the context of decentralized control. Our work represents an extension

of the estimation portion of his results . Also , while we consider only

two sets of measurements (2.3) , (2 .4) , the preceding formulation arid our

analysis of it extend in an obvious manner to the case of N sets of

measurements and local estimates .

In order to complete the formulation of the problem, we ass~~ne that

the local processing algorithms are Ka].nian filters based on different

models :

A . ( t)x~ (t) + w (t) , i1 ,2 (2.7)

E(w~ (t)w~ (t)’] = Q. (t ) 6 (t— T) , 1=1,2 (2.8)

y
1
(t) = H

1
(t)x~(t) + v1(t), i=l,2 (2.9)

where x~ (0) is taken to be zero—mean with covariance 
~~~~

. (0). It is

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _
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important to emphasize here that (2.7)-(2.9) represents a model whose

sole purpose is for the design of local Ka1.man filters. This model may

• not accurately reflect the actual statistics of y. . At the moment we are

assuming no relationship between the local model (2.7)- (2 .9) and the

correct global model (2.l)-(2.5), except for the assumption that the v.

in (2.9) are the same as in (2.5) (i.e. that they have the same statistics,

so at least the measurement noise is modeled in the same fashion locally

and globally) . As we need to impose some relationship between local and

global models , we will do so.

Given these local models, the equation for each local processor is

given by the following,*

~~~. Ct It) = (A .—P. H’ R)~H .]~~. (tj t )  + P H~R.
1
y. Ct) (2. 10)

1 1 1 1 1 1 1 i i i  1

The covariance P. can be precomputed from either of the following

equations:

P. = A .?. + P.A~ + Q. — P. H ’R . ‘H. P (2.11)
1 2 . 1  2 . 1  1 1 12 .  i i

= -P)~A. - AP .
1 

— P.
1

Q p~
1 + H’R 1H. (2.12)

dt i 1 i 11 1 i i  i i  x

with the initial condition

P~~(O) = ~~~(0) (2.13)

The problem to be solved is to obtain an algorithm for computing

* From this point of the explicit time dependence of matrices will be
suppressed. If a particular matrix is constant, we will explicitly
state this in order to avoid confusion.

~ 

- , - -.- -~~~~~-

-- ~~~- -* ——- —-
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the global estimate ~ in (2.6) in terms of and Speyer in (31 solved

this problem when the local model are the same as the global model, and we

will comment on the simplifications that occur in that case shortly .

Allowing the local models to differ from the global model leads to several

potential advantages . For example , presumably the local models are lower-

dimensional than (2.1) and represent the important dynamics at that particular

location in the distributed system or network. Therefore, the local

processors can be made far less complex than the global processor. Of course,

we cannot recover from and x2 for arbitrary choices of local models ,

but the conditions needed are quite weak. Specifically , as we will see , the

only condition that is required is that there exist (possibly-varying )

matrices M1 and M2 such that

C~, 
= H1M. , i 1 ,2 (2.14)

Equation (2.14) and its implications deserve some comment. First

note that (2.14) is equivalent to

R(C~ ) C R (H~ ) , i=l ,2 (2.3.5)

or equivalently that

R(C
1
?~D R(H~)

1 
, i=l,2 (2.16)

What these conditions say is that if any set of components of H~x~ are

linearly interrelated, then the same set of components of C~x must have

exactly the same linear interrelationship. That is, if the local models

_

~

:..5i

~

ii. :  i:.i. ~~~~~~~. ~~~~~~.
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(2.7)-(2.9) assume any redundancy among the sensed quantities —— i.e. the
components of y1 -- then that redundancy must actually exist in the global

model. Note that if (2.15) is satisfied, valid choices for M
1 and M2 are

Mj = H~C. , i=1,2 (2.17)

(where “1”’ denotes pseudo-inverse) and the choice is unique only if

N (H. ) = {o}.

Thus, the dynamics (2 .7 )  , (2.8) can be totally arbitrary , as long as

(2. 15) or (2.16) is satisfied. For example, one implication of this

condition is that the dimension of x . must be at least as large as the
2.

number of linearly independent components of the measurement vector y..

However , the condition (2.15) is sufficiently weak that, if we desire, we

can always choose a local model of this minimal dimension that satisfies

the condition. Therefore, the conditions does not require that there by

• any physical relationship between the local states, x1 and x2, and the

global state x. On the other hand, (2.14) suggests an interpretation of

as being a part of the global state, specifically Mi
x. If this is the

case , then (2.7) implies that this part of the state is decoupled from the

remaining part of x in the sense that M.x is itself a Markov process . This

is, of course, not the usual case in practice, where approximations are made

in assuming that the couplings between the local states can be neglected or

can be replaced by additional white noise sources . What our results say is

that as long as (2.14) holds, for the purposes of reconstructing x, it doesn ’t

L~. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 I:~~:iIS~~~ .~~~~~~~~~~~~~~~~~~~~~
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matter if (2.7) is an exact or approximate expression for the evolution

of the local state. If x1 actually equals M x , we obtain some simplifi-

cations in the equations that define our algorithm, and we will discuss

these at the end of this section.

As a first step in deriving our algorithm, consider the Kalman filter

for the calculation of the global estimate X:

~(t~t) = (A-PC
~
R
~~
c
1
—PC R ’C

2
]
~~(tIt) + PC~R~~y1

(t) + PC~R;
1y2

(t) (2.18 )

where P can be calculated from

P = AP + PA’ + Q - PCjR1
1
C
1
P - PC~R;

1
C2P (2.19)

P(0) = ~(O) (2.20)

The solution to the problem we have posed can be obtained as follows.

Rearranging (2. 10 ) we have *

H~R.
1y . p l{~ ._ (A._p .H

.R:
l
H.]~~ } (2.21)

Examining (2.18), we see that the quantities needed in the calculation of
A . — l  , —lx are C1R1 y1 and C2R2 y2 . These can be obtained from (2.21) only if

matrices M1 and H2 exist that satisfy (2.14) . Assuming that this is the

case , we can combine (2 . l 4 ) , ( 2 .18) , and (2.21) to obtain

• * Note that we have implicitly made one other assumption about the local
models , in that in (2.21) we are assuming that P

~ 
is invertible. This will

be gua ranteed as long as 
~~~

. (0) is invertible
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— 1 — l A
x = (A-PC’

1
R
1 

C1 
- PC2R, c’2 ]x

+ PM~P1
1{~ 1

-. IA1-P1H~R 1H1)x1
}

+ PM~P;
1{~ 2 — E A 2—P 2H~R 1H2 )X 2

} (2.22 )

In order to simplify notation , define the following quantities :

F = A~PC~R1
1C1 

- Pc;R;
1C2 (2.23 )

F1 
= A

1
—P1H~R.

1
H. i=l,2 (2.24)

G1 
= PM ’P. 1 (2.25)

Then , in order to avoid differentiating x1 and in (2 .22 ) ,  we define

= x — G1x1 
— G

2
x
2 (2.26)

and differentiating, we find that

~~= F ~~+ K 1
x
1
+ K

2
x
2 (2.27)

x = ~ + G1
X
1 
+ G

2
x
2 (2.28)

where

• K. = FG . — G. — G.F .  , i=1,2 (2 .29 )

If we use the differential equations for P~ , P~~ and P, (2.29) becomes*

* Note that in (2.29) we have implicitly assumed that M1 and N2 are dif-
ferentiable . Again this is not a particularly restrictive condition. For
example , in the time—invariant case it is certainly true , since M1 and H2can be taken to be constants.



K. = (PM P. 1Q.P .
1 

- QM P. 1]

+ [PM A~P .1 — PA ’M~P . 1 — PM’? ’] i=l,2 (2.30)
1 2. 2. 2 . 1  2. 2.

If all of the models , local and global , are t ime-invariant and if we

• consider the steady--state case , then the above solution still applies

(with ~t .=0) and is also time—invariant .
1

This is the general solution to the problem of combining decentralized

maps . In addition , this solution can be directly adapted to the problem

of computing x from and y2 . This is of interest in situations in which

one local processor transmits information to a global processor that has

measurements of its own. We can solve this prob lem by returning to

(2.18) , and instead of replacing both C~ R,~~y 1 
and C~R2

1y
2 by expressions

in terms of x. and x . ,  we make this substitution only for CjR1 Y1. The

remaining analysis is analogous to that carried out previously , and

the result is

x = p + G
1
x
1 

(2.31)

where

p = FP + K1x1 + Pc2R;
’Y2 

(2 .32)

Here F , K1, and G1 are the same as given previously .

In the next two subsections we present two special cases which

result in some simplifications in (2 .23 ) - (2 .32) and consequently allow

us to interpret our result in more detail. 

~~~ • -

-- 
•:i.~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
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2.2 The Special Case of Identical Local and Global Models

In this section we consider the case examined by Speyer in (3] .

Specifically , we assume that the models used by the local processors are

identical to the global model. That is ,

A1AfA~ ~1~~ 2~~~’ 
C1=H1, CfH 2~ M, Mf I (2.33)

In this case the expressions for K1 and K2 simplify to

K . = PP .’QP .’ — QP . 1 = (PP .1—I ) QP . 1 (2 .34)
1 1. 2. 1 2. 1.

and
_l~’x =~~~+ P(P
1
x
1
+P

2 x2
) (2.35)

Note that the second term in the expression for x is the usual expression

for combining independent estimates [4 ,5]. However and are not independent

in general, and ~ represents a correction for this correlation .

The reason that and x2 are not independent estimates is that they

are based not only on measurements with independent noises but also on a

priori information. Specifically , both of the local estimates incorporate

statistical descriptions of x (0)  and w(t ) , and thus the errors in both

estimates are correlated with these processes. It is the correlation with

the process w(t) that leads to the need for a dynamical correction C~) to

account for the correlation in the processes 
~~ 

and x
2
. If Q=O (i.e. if

w(t )  is not present) , then Ki=Oand hence ~=0 , and x is a memoryless function

of and x
2
. In this case it is straightforward to show that

__ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _  
4 - -
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~ (t~t) + P(t) tP1
1Ct )x ,(t l t )  + P~tt)~2(tIt)] (2.36)

and 

P~~~(t ) = P
1(t) + P;’~~) - r1(t) (2 ,37)

where ~ (t) is the unconditional covariance of x(t). ~n general ~(t)

satisfies

~ (t) = A(t )~~(t) + ~(t)A’ (t) + Q( t ) (2.38)

with ~ (0) given . Equations (2.36) and (2 .37) hold only in the case when

Q is zero . Note that even in this case and x
2 
are not independent

estimates because of the correlation of the estimation errors with x (0) .

Following the work of Wall [4], we can interpret (2.36) and (2.37) as

follows. We have three sources of information on which to base our

estimate of x ( t ) ,  the measurement processes y1 and y2 and the a priori

information about x(t), provided by the unconditional propagation of the

mean and variance from the specified statistics of x(0). The estimate x.

uses y . and the a priori information , which , therefore is used twice.

Equation (2.37) corrects for the fact that both P~~ and p;
l 

reflect the

uses of this information. Also , (2.36 ) is the correct expression under the

assumption that x (0)  is zero mean. If this is not the case , that is if its

mean m(0)~ 0 , then (2.36) is replaced by

~(tIt) = P(t rP~~~ 1(t !t) + P
~~~2 tIt) - ~~~(t)m(t)] (2.39)

:

~

:; - -
~~~~~~~~~~~~~~~~~~~~~~ ~-.

_- - • ~~~~~~~~~
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where m (t) is the unconditional mean of x(t) which satisfies

rn(t) = Am (t) (2.40)

Again we see the “subtracting out ” of the effect of a priori information,

so that the duplication of this information is removed.

Finally , note that X .=0 also if P=P.. However, this is only the

case if the other set of measurements contains no information . In general,

if the system is observable from each set of measurements , (PPH ’ — i) will

be invertible. Of course , all of the previous statements have certain

obvious generalizations. For example , if part of the state is uncontrol—

lable from the noise , then the corresponding part of ~ is a memoryless

function of and 
~~ 

Also, if one set of measurements , say set 1,

contains no information about a part of x , then the corresponding parts

of P and P2 are identical .

2.3 The Case in Which the Local Model is a Subsystem of
-j the Global Model

In some cases the dynamics of one of the local models may, in fact,

be the exact dynamics of a subsystem of the global model. Specifically,

if this is true of local model 1, then

x3.
(t) = M1(t )x (t )  (2.41)

Equation (2.41) has several important implications. Since x1 satisfies

(2.7),(2.8), and x satisfies (2.l),(2.2), equation (2.41) states that

the Markov process x Ct) has a subprocess , namely x1 
(t ) ,  that is Markov

4
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by itself. Differentiating (2.41) and using (2.1) and (2.7 ) we have that

A1M1x+w1 = A1X1+w1 = = M1x + M1x = M1x+M1Ax + M1w (2.42 )

and from this we conclude that

A1M1 
= + M

1
A (2.43)

and

w1 = M1w (2.44 )

which implies that

Q1 = M~QM~ (2.45)

Also , directly from (2.41) we have that

= M
1

EM~ (2.46)

Note th-’t from (2.46) it is clear that E~ is invertible only if H1 is

onto (assuming that E is invertible). We will assume that this is the case s

since from (2.41) we see that any other choice for M1 leads to an x1 with fewer

degrees of fre edom than it has components. In addition , under these

conditions, the expression for K1 
simplifies:

K1 = PM~P1
1M1QM~P1

’ - QM~P1
1

(2.47)

= [PM~P1
1
M
1
-I]QM~P1

’

This equation bears some resemblance to the form of the gain when the

local model is the same as the global model. In order to gain further 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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insight , we wish to consider a particularly convenient form for the

global model. This is done by choosing a basis for the global state

space so that the components of x1 are the first components of x.

Assuming without loss of generality that the global model is in this fqrm,

then

,f x ~ \
(2.48 )

‘ ‘ ( I

M1 
= CI 0) (2.49 )

f x ~ \ ~~~ 0 \ /Xl\
( J = (  j (  J + w  (2 .50)

~ -j~ I ~ A21 A22 ! \ y  I

I
~~i ~12 ‘Q 1 1 (2.51)

k~~~~~ 2 
Q2 2 /

= (H1 o) (x,\ 
+ (2.32)

~1/

y2 = (~2, c22) (x1) 
+ v2 (2.53)

This form is illustrated in Figure 2.1. Note from the figure that it is

clear that the global system is not observable from y1 alone. This is

not surprising given that x1 is Markov by itself.
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Using ( 2 . 4 8 ) — ( 2 . 5 3 ) ,  equation (2.47) becomes

(~_l 
\ -l f~l \ •  

-

K1 
= P (

k

--—-

) 

Q1P1 - ‘ 

-

~12 /

—1 —1

~~~~11 
P1 — I ] Q 1P1

= (2.54)
r~~~~~~’ p 1 ~~] —~

1 2 1  12 1

where

~~~1l ~~~l2 \P = J (2.55)
(P)~ 2 (P)22 /

From this and the previous equations and from the figure we can get a

clearer picture of the structure of our solution in this case*. Since K1
is partitioned , let us consider each part individually . The first piece ,

is exactly of the form of the gain that we saw in the

preceding subsection when the local and global models are identical. (see

equation (2.34)). This is not surprising, as the first piece of the

global state x is nothing more than x1, for which the local and global

models agree. Therefore, the incorporation of into a global

estimate of this piece of x, given y
1 and y

2, is the same as

* In the following discussion we use the notation developed previously.
Thus refers to the local estimate of x1 given y1 (P1 is its locally-computed

covariance) and refers to the global, estimate of x given y1 
and y

2
. (global

covariance P). In the particular cz’ee being examined here x f x1 \ , and

hr /
therefore there is some chance of confusion . We have attempted to reduce this
chance by using x1 and x only in the senses described above. Also, we have
denoted the upper left-hand block of p by 

~~~~ 
(see (2.55)) to distinguish

it from P . Here (P) 1 is the estimation error covariance of x1 given y1
~~~ 

w~fi1e is t~e error covariance based only on y1
. 
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the problem we considered in Subsection 2.2.

The second piece ((P)~ 2
P
1
1’Q1

_Q
~2
]P~~

’ essentially tells us how to

use the estimate of x1 to obtain an estimate of the remaining part of

the state. Consider for the moment the case in which there is no second

set of measurements , that is , when C
21
=C22

=0. In this case we have a

cascade interconnection of two systems and measurements from only the

first of these. It is clear that under these conditions

which merely states that local processor #1 produces the best filtered

estimate of x1 given y1. From (2 .54) we see that this observation is

consistent with the fact that the first part of K1 is zero . Also, the

second piece of K1 becomes

(P~~Iç~Q1
_Q
~2 i(~ç~

and using (2 . 2 3 ) — ( 2 . 2 8 )  and (2.54) , the optimal estimator for y becomes

Ti 
~~
(
~L2(~&i ~~~~. 

(2.57)

Ti = A
221i + ( j ~~~~~ — Q~ 2 ](P)~,~~~1 

(2.57)

These equations describe how the optimal estimate of the unobservable

part of a system can be constructed from the optimal estimate of the

observable part . It is worth noting that this particular special case is

of practical importance , for example , in navigation systems in which

accelerations are sensed and in which velocities and positions are to be

estimated. Our result states that the acceleration measurements can be

processed first (locally) to produce optimal acceleration estimates , and

_ _  -

~~~~

_ _ _ _ _ _ _  --~~~~~~~~~~&--“ - •~ 
f
—~~~--- ~~---
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these estimates can then be used (perhaps in a centralized processor)

to compute the optimal estimates of velocity and position . Again the

transmission of filtered measurements may be done more efficiently than

the transmission of the raw data , and the complexity of the two processors

(for X1and for y) are each less than the complexity of a global , cen-

tralized estimator for x. Such a procedure may also be of value even if

is present, for example, if we do have velocity or position sensors.

In this case, from eq. (2.32) we see that our results tell us how to

reconstruct the optimal estimate of acceleration, velocity and position

in terms of velocity and sensor measurements and the estimate of ac-

celeration obtained by processing the accelerometers alone. Again there

may be transmission savings in transmittii~ this estimate rather than

the raw accelerometer data, and, in addition, there may be implementation

advantages in breaking the overall optimal estimator into smaller pieces.

Note also from (2.47) that K(0 if Q=O. In fact, from (2.49) and

(2.51) (together with the fact that must be zero if is), we see

that K
1
=0 if Q1

=O. In this case, whether y2 is present or not, x

depends on in a memoryless fashion. This is best understood by

noting that with Q1=O , x1 is a time-varying bias
*

x1
(t) = $1(t ,0)x 1(0) (2 . 58)

and it also produces a time-varying bias in ~

* Here 
~~~~, 

is the state transition matrix associated with A1. Similarly

~22 
is the state transition matrix for A

22
.

- - - -~~~ • • - - - -  - —~,--.. _—-—— _ _—-_- -~~~- --._-.... - —~ • - -~ - - - - 4
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y (t )  = ~22Ct ,o)y( 0 )  +[~ ~22
(tIT)A2l

(T)x
l(T)dtI

+ 1 ~22 (t ,T) (0 I ] w ( T ) d T  (2. 59)

The measurements y
1 
provide information about the second term

in (2.59), which can be rewritten as

[!~22 t
~
TA

2l T T lt dTIxl
t (2.60)

Thus the best estimate of y given the measurements y
1 
is simply a

memoryless function of ~~ For example , if we do not have a second

set of measurements (C
21
=C22

0), then (2.28) reduces to

x = PM~,P1
1’X

1 
(2 61)

where H
1 
is as in (2.49) and P is given by (2.54). Therefore -

A ,
= P].2~’l x1 

( 2.62)

III. THE SMOOTHING UPDATE PROBLEM

Consider the formulation described in the preceding subsection, but

with the following additional features: (1) we observe the measurements

over the time interval (0,T]; (2) the data are processed locally to

produce the smoothed estimates

— 

— — ---- S -~~  --~~ — -S.- — —
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= E(x . (t )~ y . ( T ) , 0<T<T] (3.1)

based on their local models; and (3) we wish to compute the overall

smoothed estimate

~~ (t) = E(x (t)~ y1
(T) ,y2

(T) , 0<T<T] (3.2)

using only the smoothed estimate histories 
~1s and x2~~. A second , very

closely related problem is that of computing 
~ 

in terms of 
~1s 

and y2 .

As we discussed for the filtering problem at the end of Section 2.1, the

solution to the first of the smoothing problems will also provide us

with a solution for the latter. Therefore we will do our analysis for

the first problem and will comment on the second problem afterwards.

The motivation for these ques~ .ons comes from problems in map updating.

Suppose that, as illustrated in Figure 3.1, we are interested in the

estimation of a two-dimensional random field given data obtained from

parallel tracks. Problems of this type arise in the mapping of gravita-

tional anomalies given data obtained along tracks over the ocean [2,14]

arid the mapping of meteorological variables from data gathered by

satellites (1]. In this case we can think of x as representing the

variables to be mapped along the ith set of tracks or over some portion of

the field including these tracks . The global state x then represents the

field along all of the tracks or regions surrounding each of the tracks.

Note that our model allows repeated or overlapping surveys (x . ax . for

repeated surveys , while some components of x . are the same as components

of x.  if the surveys overlap).

-- -S——--- ~~—--- S-- -~~~~~~~~ 

- - 

-
- 
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FIGURE 3.1: Parallel Data Tracks Across a Two-Dimensional
Random Field
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As in the preceding section we will assume dynamical models for

x and x. along the direction of the tracks. This can be done if the

underlying field has a particular characterization. Specifically, let

fCt s) denote the two—dimensional random field, which we assume to be

Gaussian and, for simplicity, zero mean. Here t is the direction in

whic*~ the tracks are taken -- i.e. we observe the field over lines of the

form {(t,s.)Ioczt<T} for several values of S
1
. What we require is that the

set of processes f(t,s.) jointly have a finite-dimensional shaping filter

representation. Define the 2-D correlation function

R(t,T;s,a) E(f(t,s)f’ (-r ,c)j (3.1)

As in 1-0, this function has a certain symmetry property . Using (3.1)

it is readily seen that

R(t,T;s,a) = R(T,t;C1,s)’ (3.2)

Thus, if we specify R(t,T,s,CY) for all 4—triples (t,T,s,a) with t>t,

we will have completely specified it. Other properties of f can be

reflected in properties of R. For example if f is stationary, then

R(t,T;s,a) = R (t— t ,s—G) (3.3)

and if we specify R(T ,a) for ‘r>O and a arbitrary , we will have completely

specified it.

The requirement that any set of tracks f ( t ,si
) be realizable as the

output of a finite dimensional shaping filter places additional restrictions 

~~~T~~IT ~~~ r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - ~~
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on R. One important case in which this is true is when R is separable

R(t ,t;S ,O) = R1(t , T )R 2 (S ,O) (3.4)

with R1 and R2 square ,

R1(t ,T) = R~ (T~t) , R2 (s , O) = R ( O ,s) (3.5)

arid R
1 
itself being separable

R
1
(t ,T) = H(t)G(-r) , t>T (3.6)

It is not difficult to see that (3.2), (3 .4 ) , (3.5) imply that R1

arid R2 commute for any values of their arguments . The case (3.4)-(3.6)

.1 is a slight generalization of classes of processes considered by others .

For example , if we had further assumed a separability condition for

as in (3.6) and made the field stationary (so that (3.6) becomes

= He~
’T
G, t> O ) ,  we would have the continuous-space version of the

model considered by Attasi.

While the restriction of finite dimensionality and the scenario of

Figure 3.1 are quite special, this problem is of interest in the applica-

tions cited earlier, and it opens up some interesting technical problems

which we will discuss and solve. Furthermore, we feel that our results

do shed some light on the issues involved in assimilating spatially—

distributed data and combining regionally-processed information and as

such represent a modest first step towards the goal of solving less

restricted versions of these problems .

- -— —~~ -— —
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Recall that in the preceding section we solved the causal —- i.e.

filtering -- version of problems of combining and updating estimates.

We found that a solution existed with effectively no restrictions on the

relationship between the local and global models (except the existence of

M. in (2.14)). In this section we are interested in the noncausal versions

of this problem. As we will see, the updating problem always has a solution,

while the combining problem can be solved only when some further restriction ,

which also is not particularly severe, is placed on the local models.

In the next subsection we will develop the basic ideas behind our approach

and will pointout where the difficulty arises. In the following two sub-

sections we will address the two special cases considered in Subsections

2.2 and 2.3, which are the most important for random field mapping, and we

will see that the difficulty can be overcome in these cases.

3.1 The General Case

The starting point for our analysis is the two-filter form for the

optimal smoother. In particular , we will follow the approach described in

(4]. In this approach the smoothed estimate is a weighted combination of

a forward estimate, produced by the usual Kalman filter, and a reversed es-

timate, produced by a Kalman filter based on a reversed-time Markov model.

This approach has the advantage of riot involving infinite initial error co-

variances. For all of this we assume that x(0) is zero mean and that the local

— -- —

~

--—— - -- --- - --- — — — -

~

-

~

-- - - - ~~~~~~~~ 
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processor filters (forward and reverse) are initialized at zero . Nonzero

initial conditions can easily be accommodated , because of linearity, and one

should then think of all of the variables in our formulation as describing

deviations from the a priori mean.

Let us suzmnarize the smoother equations for each of the two local

processors. For ease of reference, all of the relevant equations are

collected here. The forward estimator for processor i (i=l ,2) is given

by

A —1 A —l
x. = (A. -P. H.R. H.]x. + P. H R . y . (3.3)
if 3. i f i i  i if i fi i  i

where Pjf can be precomputed from either of the equations

P. = A.P. + P. A~ + Q. - P . H ’R .
1H p . (3.4)

if i 3~f i f i  i i f ii  iif

~~ (p .~~) = -P .~ A . — A P .~ — ~~~~~~~~ + H ’ R 1H . (3.5)

Note that these equations are essentially the same as (2.lO)—(2.l2).

The reverse time estimator involves the unconditional covariance for

the local model assumed by the processor, which can be calculated from

= A.~~. + 
~iAj 

+ (3.6)

or

(3 7)

-

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _  _ _ _ _ _
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The reverse-time estimator operates backward in time fitm t=T and is

given by

—l — l -‘ ‘ — 1-x. = (—A .-Q.~~. 
- P. R ’R. H . ]x .  + P . H.R y . (3.8)

ir i i i  irii i ir i r i i  i

which is a backward Kalman filter, with covariance also calculated

backward in time (with initial condition P~~~(T) = ~ . (T) ) f rom either of

the following equations

~~ir 
= — (A.+Q.~T

1]P . -

— l (3.9)
+Q. - P .  H R . H P .i. ir i i

- ~—(P~~ ) = P
_1
[A +Q 11] +

dt ir ir i i i  ]. i i  ir
(3. 10)

+ H .R.
1
H.ir i ir i i  i

The smoothed estimate x . is then given by

~~x = P . (P . x. + P. x ] (3.11)is is if if ir ir
where

—l —1 —1 —1
~is = 

~if 
+ p~ — (3.12)

Note that (3.12) again reflects the fact that X
if and ~ir 

are not

independent estimates , as they both utilize a priori information,

in this case the information concerning x (0) . Here (3.12) holds for

any value of Q~
.

_ _  -~~~~ ~~~~~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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The overall smoothed estimate satisfies a similar set of equations

= p (p~~~ + p~~~ ] (3.13)
s s f f  r r

= + — (3.14)

= A~ + ~A ’ + Q (3.15)

( ~-l~ = - ~~~A-A ’~~~~ - (3.16 )

Pf = AP
f
+P
fA+ Q~

P
f
C1
R
1
C
1
P
f~
P
f
C2
R
2
C2Pf 

(3.17)

~~ (P;
1) = 

~~~~~~~~~~~~~~~~~~~~~~~ 

(3. 18)

r 
= — (A+Q~ IP  — 

~r [A+Q~ ] + Q

_P
r
C
~
R
i
’CiPr r~~~~~~2~

’r 
(3.19)

- 
~~~~ (P;

1
) = P

;1(A.~Q~
-l

] + [A+Q~~
l
1tp ;1 - P 1

QP
1

(3. 20)
+ C~R1

1C1 + C R ~~~C2

Using the results of the previous section we can calculate Xf in

terms of X 1f and X 2f~ and , by looking at the problem in reverse time,

we can use the same result to compute Xr 
in terms of Xlr and X2r The

resulting equations are

____.__=_ i~ _l____________ . _________ . ..~A4...... - _ - . ~~~~~~~~~~~~~~~~~~~~~~~~~~
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X
f 

= 

~f 
+ Gj?if + G2f X2f 

( 3.21)

= ~~~~ + K1fX1f + K2f X2f 
(3.22)

where

Ff 
= A — P

f
C
1
R
1
1
C
1 

— Pf C R ;
1C2 

(3.23)

= P .~~~ ( 3.24)
if r i i f

K if  = (P
f

M~P~~ Qi P~~ — QM’P.~~)

+ (p..M~A~P.
’ — P..A’M!P.

1
] — P M ’P)~ (3.2 5)

r i i i f  x i i f  fi if

and in reverse time

x =~~~ + G  x + G  (3.26)
r r lr lr 2r 2r

-
~~~~~ F~~ + K  X + K  x (3.27)

r r r  lr lr 2r 2r

Fr 
= _A_Q

~~~
_P
rciRi.

1
c1

_P
rc;R;

1
c2 

(3.28)

G . = P M~P .1 (3. 29)
ir r i i r

K. = (P M ’P 1 
Q.P.

1 
- QM’P~

1
]ix r i i r  i. ir i i r

+ {P
~Mi (_Ai_

~ i
1

Qi1P
~~ 

— Pr
(_A ’_

~ 
Q]M~P~~ } + PrMj P~~ 

(3.30)

Fran (3.l3),(3.21),(3.22) ,(3.26), and (3 .27) ,  we now have an

algorithm for calculating x0 from X1f~ 
~1r ’ ~C2f and What we would

like is to compute ~ in terms of ~~ and . To see when and how thisis 2s

— -~~~~-— --- - .--- -~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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this can be done, we note first that from (3.11) and (3.24)

—lA —lA —l .1A 
~l” —lP

f 
X
f 
+ 

~r 
xr = P

f ~f 
+ Mj P1f X1f + M~P2f

x
2f 

+ 
~r ~r

i —1’. ,+ M P  x + M P  x
llr lr 22r 2r

—l —l , —l” , —lA
= P

f ~f 
+ 
~r ~r 

+ M1P1 x15 + M2P2 x2

Thus

~5 
= P

5
tP
f~~~f 

+ + M~P1
1
~1 

+ M
2
P
1
~2

] (3.31)

The last two terms on the right-hand side represent the type of

combination of estimates one would expect if the two sets of measurements

had independent sources of error. However, as we have seen , they are

correlated , and thus we have the correction terms to account for this

correlation.

We have now reduced the algorithm for calculating x to equations

(3.31), (3 .22 ) ,  and (3.27). We have eliminated X
1f and and

replaced then with in (3.31), but (3.22) and (3.27) still involve the

forward and reverse estimates. Cur goal is to try to perform a combination

of terms , as was done to obtain (3.31) , in order to replace these

estimates with However , we cannot perform this in the same simple

manner as was used earlier at least for the equations we have here. For

example, (3.22) involves Xif but not Xi r~ 
so we cannot combine terms to

obtain xis . Rather , we have something that more closely resembles an

inverse system problem: we want to express the term involving Xif in (3.22)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _  
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by a team involving x. . As we will see in the next few subsections

this cannot always be done , but there are some very important cases in

which it can be done. The most basic of these is considered in the

following subsection.

3.2 The Special Case of Identical Local and Global Models

As in Subsection 2.2 , consider the case when

A1 AfA~ Q1=Q2=Q, C1=H1, C
2
=H
2

• (3.32 )
H
1 

H
2 
I

This might correspond , for example , to two separate measurements along

the same sets of one-dimensional tracks or of maps of the same region

in the two dimensional field produced from measurements along two

different sets of tracks.

For this case we obtain some simplification , as we did in the

decentralized filtering problem. Here

= P
2

[P~~~

1

~~~~~ + 
~;
‘
~r + P

1 
X
i + 

~2 2 s  (3.33)

and

= F
f~~ 

+ K1fX1f + K2f X2f 
(3.34)

-
~~~~~ F~~ + 1 ( x + K  x (3.35)r r r  lr l r 2r 2r

where

K if = [P
fPj~ 

- I]QP~~ (3.36)

K
i 

= 

~~r~j
1 

- I]QP~’ (3.37)

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ •
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We now see that the quantities we actually need in (3.34) and (3.35) are

QP
1~

Xjf and ~~~~~~~~ In order to proceed, it is useful to define

—] .‘~Z = P .~ x
if if if

z. = P~~~X . (3.38)
ir irir

z . P. x.is isis

Then, from (3.11)

z = z + z (3.39 )
is if ir

and, differentiating

Z = 

~~~~ 
~~

-
~~~~1 

X jf + PifXif (3.40)

(P~~ ) 
~~~ . + P~

1
~ 

(3.41)
ir ~dt ir ir ir ir

Substituting (3.3) and (3.5) into (3.40) and (3.8) and (3.10) into

(3.4 1) and performing some algebra, we obtain

Z = — (A’+P.
1Q)Z. + C ’R. 1y. (3.42)

if if if i i i

— 1 —l —l
5ir 

= -(A’ -f~ 
Q_P

jrQ)Zir 
— CR. y~ (3.43)

If we add these last two equations and use (3.39) we obtain two dif-

fereri t equations for the time rate of change of

A 
_ _ _ _ _
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—l — 1 —lz . 8 = — (A’-I-~ Q—P . Q )z . — 

~is~~ if 
(3.44)

Z . = — (A’+P.
1Q)z. + P)Qz. (3.45)

is if is is ir

Thus

Qz .f = P . 1 4 . (A 1 +~~
1

Q—P . 1Q) z . ]  (3.46)

QZ. = 

~is~~is 
+(A’+P.~ Q)z. ] (3.47)

From (3.34)-(3.38) , we see that we can use (3.46), (3.47) in these

equations to replace ~~~. , ~~~. with x . . Thus in this case, we can obtainif ir is

an algorithm of the desired form. Note that we haven’t shown that we can

recover ~~~. , x . from x. , or equivalently Z~ , Z. front Z~ , but we have
if ir is if ir is

seen that we can recover QZ. and Qz. , and this is all that we need for
if ix

our problem. Note, however, that the expressions (3.46), (3.47) for

these quantities involve derivatives of z. . In order to avoid these,

we must use a feedforward formulation. Fi:st of ~ti1, substituting (3.36),

(3.46) into (3.34) we obtain

F
f 

= Ff~f 
— 

~~(Pf
P~f 

—I]P. (~ . + ( A ’+~~~
1

Q—P .~~Q)Z .5
] (3.48)

From (3.38) we know that 
- -

x . = P . P .1 ~~~. + P . z . (3.49)is is is is is is

or
A .

P z = 21. - P. P. x. (3.50)is is is iS is iS
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Now define

2
qf 

= + ~~~~ [P~P.~ 
— I]x . (3. 51)

i=l

Differentiating this , using (3 .50 ) , we obtain

qf 
= Ff

[q
f 

— ~ (PpPj~ ~~~~~~~ 
+ 

.
~~~ fr (P~P.~~)],c.

- ii [P f P~~~~ I] (-~~. 5P + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(3. 52)

We have all of the equations needed to simplify this equation

except for an expression for P. . From (3.12)

~~ 
(p
~~) 

— 
~~~ (p~~) + ~~

_- (p
~~) 

— ( 
~~~

and using expressions for the terms on the right—hand side (equations

(3.5) , (3.10) and (3.16) together with (3.32), we obtain

~~
— (p~~~) = — P )A  — A ’P.

1 
— P.

1
~QP) 

— P 1Q~ + P. QP. (3.54)
dt is is is if is is is ir

A great deal of algebra then yields

qf = Ffqf 
— Pfc;R;’c2x15 — Pf Cj R1

1C1X25 (3.55)

Note that “2” -subscripted matrices multiply and “1” —subscripted

matrices multiply X
2~~

We can follow exactly the same ideas for the reverse filter. Let

q = + ~ (P p~~ —I] x. (3.56)
r r . r i r  isi=1

- ~~~
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Then —

= F q — P C ~R;
1C2x1 

- P C ~R1
1C1x2 (3. 57)

Substituting (3.51) and (3.56) into (3.33) , we obtain

A 
I —]. 

2 
— 1 — 1 ”  —l

= P
2 1P~ qf 

— 
~~~~ (Pjf 

— Pf ]x . + P~ q
i=l

2 — 1 — l A 
2 

1 (3.58)
-

~~~~~ (P. - P  ]x. + ~~ P. X .ix r is . is isi=1 i=l

Using (3.12) and (3.14) , we obtain the following algorithm for

combining smoothed estimates

= P
S ~~~~~~ + P 1

q }  + + (3.59)

qf 
= F

f
q
f 

— PfC R 2
1
C
2
X
1 

— P
f Cj R1

1C
1

X
2 

(3.60)

—q = F q  - P c;R;’c2x1 
- P C ~R1

1C1X2 
(3.6 1)

If we think of optimal estimates as orthogonal projections in spaces

of random variables , then x1~ is the projection of x onto Y1, the subspace

spanned by the first pass measurements. Similarly is the projection

onto Y2 , and x is the projection onto + V2 . If V1 and V2 were

orthogonal, i.e., independent, then would equal Xis + However,

they are not , and thus the other terms in (3.59) account for this.

We can actually see this point more clearly if we look at the smoothing

update problem, that is , the problem of computing 
~~ 

in terms of the

_ _ _ _ _ _ _ _ _ _ _ _ _   - ---p 
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time history of the old smoothed estimate and the new data V2 .

The solution to this prob lem is readily obtained in a manner analogous

to that used in deriving ( 2 . 3 2 ) .  That is , if we perform all of the

analysis we have just done, leaving y
2 
alone and only replacing y

1 
by

X1f ic
1~~ 

and eventually by x15, linearity guarantees that the input-

output relation from x1 to x is the same as that obtained already .

Thus , all the work we need to do is already done , and we can simply

write down the solution to the updating problem:

= P (P
1r + P 1r I + (3.62)

s s f  f r r  is

rf 
= Ff r f + PfC~R;

1
Y2 

— Pf C~R2
1C2X1 

(3.63)

=r = F r + P C ’R
1
y - P C’R 1x (3.64)

r r r  r 2 2  2 r 2 2  ls

Here , if we let F denote the orthogonal complement of V1 in Y1+V 2 -- i.e.
the part of V2 that is independent of V1, then Y1+V = V1 0 F , and

is the projection of x onto V~, while the remaining terms in (3.62) are

the projection onto F.

Note also that (3.63) , (3.64) can be rewritten in the following

form

= Ff r + P
f

C~ R;
1

(y
2

_C
2

X
15

] (3.65)

-r = F r + P C ’R 1(y - C x 1 (3.66 )
r r r  r 2 2  2 2 1s

L—. 
- - - - . -

~~~~~~~

-

~~~~~ - - -5 ~~~~~~~~~~~~~~~~~~~~~~ ----5---- 
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Thus these correction terms, which provide the projection onto the

new information in y
2 
are driven by the difference between what we

observe and what we expect to observe based on our first map . Another

interpretation is that these corrections terms are the projection of

the estimation error (x415) onto V2 . What we have done with a great

deal of algebra is to obtain realizations of these projections in terms

of finite-dimensional forward and reverse filters.

Since they may be useful, let us note two other forms for the

solution to the problem. Let

—l —l
flf 

= P
f 
q
f , Yf 

= P
f 
r
f 

(3.6 7)

—l —1
r~ = P  q , y = P  r (3.68)r r r r r r

Then the equations for the combini~g~ of smoothed estimates become

= P (r~ -i-ri ) + + x (3.69 )
5 5 f r is 2s

fl f = ~ (A ’+Pf
1Q)fl f 

— C;R;’c2x15 
- C

1
R~~C1

X
2 

(3.70)

= (A ~~ +~~~~~
l

Q.~~P
1

Q) fl  - c;R;
1c2x15 - Cj R~~~~~C

1
~~~

2 
( 3 .71 )

and the corresponding updating equations are

~
C
S 

= P (Yf+i) + 
~ls 

(3.72)

= •(A’+Pf
1
Q)Yf 

+ c;R;
1cy 2—c;x15) (3.73)

—l —1 —1 A
= ~~~ ~~ ~~~~ ~~~~ 

+ C~ R
2 
(y
2
—C
2
x
1
) (3.74)

5— -- —--- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ -—~~~~~~~~~~~~ ~~~~~ —~~~~ -~~~~~~~~- - 5- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~~- - -- -- -.
~~~~ 

—
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If instead we use

= 

~s~ f 
- 

~f 
= PY f (3.75)

= 

~s~r 
‘ B 

~s~r 
(3.76)

we obtain

x ~ + c ~ + x  +X  (3.77)S f r ls 2s
—l —1 —1 Acx

f 
= (A+Q~ 

~~r 
)c&
f 

— P C R 2 c2211 
— P C

1R1 
C1x2 (3.78)

= — (A+QP~~)x - PC ’R
2
1
C2~1 

- r’scic 1
x
2s (3.79)

and

x = Bf + 8r 
+ x

is (3.80)

= (A+Q~~
]-_QP;

1)~ f + P C R ;
1(~2

_C
2x1

) (3.81)

= 
_
(A+QP;’

~
)B
r 

+ P C~R2
1(y

2—C2
x
1
) (3.82)

Note the striking symmetry between the equations using the fl’s and

y’s and those using the ci’s and ~3’s.

3.3 Conditions for Existence of a Solution to the General Case
and an Important Special Case

In the preceding subsection we saw that the smoothed estimate

updating problem could be solved when the local and global models are

identical. In this section we look at the problem when this is not the

- I , 
_

— —
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case. Recall that the general algorithm had been reduced to (3.22),

(3.27), and (3.31), together with (3.24) and (3.29) which define the

gains needed in the algorithm. Also, we have equations for Z.f ~ Z~~~,

and z. as before, but with slight modifications due tc the fact thati-s

we have local models. Specifically , we have

= z. + z~ (3.83)is if ix

= —(A ’+P~~Q. )z . + I~ R~~ y .  (3.84)if i i f i  if i i  i.

—l -i -1
= ~(A~+~ Q. —P . Q.)z. — }I~R. y. (3.85)ix i j i i-r i. ix ii. i

which lead to the equations

Q~Z~f 
= ~~5 (415 — (A~-f~~~Q.—P Q.)z. ] (3.86)

Q~z. = 

~is~~is 
+(A +P~~Q.)z. ) (3.87)

In order to proceed as we did in the preceding section we wish to

be able to find some matrices L. , L. so that
if ix

A

K. 21~ = L. Q.z. = L. Q.P. X. (3.88)if if if i if if i if if

K. X . = L. Q. z. = L . Q. P . 1x . (3.89 )ix it 3X i. ix ix i ir ir

This will be possible if and only if

N(Q.P.~~) C N(K.f) (3.90a)

N (Q
i
P
i~

) C  N(K.) (3.90b)

___________ ~1 

-
~~

- - -.- - - - ‘- --
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-- - - - - . 
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Note that if (3.90a) and (3.90b) hold , then I.. and L . can be chosen
if ir

to be
-1•

L .f  = K . f P .f Q.

t
L. = K . P.Q.ir i n n

In this case, we can substitute in for Q.z. and Q z . and Q.z. using
i~~~f u n  i i r

(3.86) and (3.87) and then use a set of steps similar to those used in

Subsection 3.2 to remove the 5 —term . Specifically , substituting

(3.86)—(3.89) into (3.22) and (3.27) we obtain

~f 
= ~~~~ 

- ~ L.fP.5
(Z. + (A! + 

~.Q. 
- P .

1
Q .)Z .]

i=1

2
—

~~~ 
= F ~ + L . P . [z . + (A! + P.

1
Q.)Z. Ir r r • in us is i if i is

i=1

Then, using (3.38) and (3.50),

• . 2
A 1 —l —lA

= F ~ + L . (P . P . x . - x . - p . (A !+~~. Q. -P . Q. )P . x . ]
f f f . if is is is is is i. i i. ix a. is is

i=1

. 2 A . —l~ —l — lA
-

~~~ 
= F ~ + L. Lx . — P. P. x. + ~~~. (A!+P . Q.)P. x. ]

r f f . ir is is is us is i if a. is is
i=1

Defining

2
q

f 
= 

~f 
+ 

~ 
LifX.

i=l

2
q ~ + ~~ L. X .r r . iri s

1=1

— - -

~

- —-—

~

-- ~~
_ -I

~~~-j_I--~~”-- 
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we find that

q
f 

= F
f
q
f 

+ N1f X1 + N2f X2 (3.91a)

= F q  + N
1
x
1 

+ N
2
x
2 (3.9Th)

= P (P
f
1
q
f + P

1
q + D1x1 + D2x2 ] (3.91c)

where

N .f = _F
f L

if + Lif + L .f P . P~~ - L
if P . S (A!+

~ . Q . _P 1Q . ) P 1 (3.92 a)

N~ = _F
rLir 

- 

~ir 
- L . P . P . 1 + L.P (A!+P 1

Q)P 1 
(3.92b)

D. = M~P.
1 

- P 1L . - P 1L . (3.93)u u s  f if r ur

The analysis in this case is clearly more complex, since the equations

involve M. and Q., and if these are time-varying, we will also have to

consider their time derivatives.

Note that one obvious case in which (3.90a) and (3.90b) hold is

when Q. is invertible. In this case the smoother is, in fact, invertible,

as we can recover Zif and z~ and consequently the original data y.,

since the forward and reverse Kalman filters are always invertible. In

the remainder of this section we wish to consider one other important

special case from which we can gain more insight into the nature of our

solution .

Specifically we wish to consider the case in which x
1 
is an actual

part of the global state. As was discussed in Subsection 2.3, in this

~~~~~~~ - - - - - - --- -- —
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case (assuming that H1 is onto) we can choose a (possibly time-varying )

basis for the state space so that we can identify x1 with some of the

components of x

x = l  1 (3.94)
\Y /

f~\ /Ai 0 \ /xl\
( 1 = 1 II I + w (3.95)

\~~~~~~~/ 
\A 2l A22 1\Y J

Q =( 1 (3.96)
\ Q~2 Q22 J

= (H
1 

0) 
(
~l ~ + v1 

(3.97)

\ “ lr /

Also, using (2.57) , equation (3.25) becomes

/ t P f 1 1Pj~ — I3Q1P1~ \

K1f ( 1 (3.98)

\ UP~~~)~~~~2
P

~~~~~Q
1 

— Q~23P1~ /
where

/Pf11 
(P
f
)
12 ~

= I 1 (3 .99)
~ 1 (p )’ (p )

\ fl2 f22

~

-5-

~ 

--- - ‘---5 --~~- ~~~ — - -5 - - -- - - -5 ---— - _ - ~~~~~~~~~~~~~~~~~~~~~~~ ~~
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If we write

(W i \
w =1 1 (3.100)

\ 
W
2 ~

then

E [w1(t )w ~~(t) ] = Q15
(t—t) (3.101)

E(w
2
(t)w~ (t)] = Q~2~

(t—t) (3.102)

From this it is relatively easy to see that there must be a matrix

- 
- so that

Q~2 
= T

1Q1 (3.103)

Specifically , if we write w
2 
as w

21
+w22, where w21 is the best estimate

of w
2 

given w
1
, then w

21 is a linear function of w1
, say w21=T1w1, and

E(w22 (t)w~~(t)]=0. This, together with (3.101) and (3.102) yields (3.103).

If we substitute (3.103) into (3.98), we find that

/ (P~)11Pj~ — I

K1f )Q1
P
1~ (3.104)

(P
f
)
12
P
1f 

—

There .~~re ,

f P f l l P~~ — ‘ ~ \ I’ \ (3.105)L
1f 

\(Pf)j2
P~~ - T1J 

P
f~ 0

We can perform a similar analysis in reverse time , but the situation

F is a bit more complex. We will comment on the reasons for this complication

shortly , but first we will present the solution . For the special case

described by (3.94)-(3.96) , equation (3.30) reduces to 



— 
-___ _ _ _ _ _ _
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Kin = (PrMj P~~Mi 
- I1QM~P~~ + P

r
(
~~

1
QMj~Mj~ i

’
Qi

]P
~~ (3.106)

where M
1
=(I 0], Q is given by (3.96), and ~ and 

~ 
are related by

1~1 ~121
I (3.107)

U12 ~~ 22 -’

and, using a basic formula for matrix inverses for block matrices (see ,

for example, (5, p.495])

+ 
~l2 1~ 22~~ i2 ~1 ~l2] ~i2~ i

E~22 ~i2~1~~l2 I ~].2 ~ ~~~~~~~~~~~ I
(3. 108)

Using these relationships and also (3.103), equation (3.i06) becomes

x = 
(Pn

)
1lt~~ 

I]Q
1
P
1
1 

\in 

~~~~n~].2~ 1r 
- Ti)Q 1P~~

)

v_ i 
~
. I~v v ’ v 1 c —l~~

L1 L12 [L22 L12 L1 L12 
~ ~—1 ] —1

-l 1 1 1. — T
1Q1

P
— 

[~ 22 
— 

~l2 ~~~~. 
:~:1J• / 

12 1 
(3.109)

L 
_ _ _ _ _  

- - 

., 
4- - - —--5—-- ~~~~~~~~~~~~~~~~~~~~~~ ~ _ _s_~__ ___ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 5 - - - ~~ - - -—
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Therefore

= 

[

~~n~1i~].r 
- 11+

(~~~~~~) ~ -Tr i 2 ].r 1

—l
~ ~ 

— ( P )
n i l 1 12 r 1 2  —lt~22 12~1 z121 II~12 z1 - T

ij

= 

~
‘r ~ )-(:j~ ‘~rV1 (:~) - 

(

~
_l 

)i (3.110)

Comparing (3.109 ) and (3.110) with (3. 104) and (3.105), we see that

the first terms on the right-hand sides of (3.109) and (3.110) are

analogous to the right—hand sides of (3.104) and (3.105) , respectively .

The additional terms in (3.109) and (3.110) represent the complication

that arises in constructing reverse models for x
1 
by itself (as used in

the calculation of 
~lr 

and x
15) and a reverse model for x = (x~~~

’)’~

which is used in computing X
r 

and 
~~~~~

. Since both x
1 and x are Markov ,

we can in fact obtain reverse—time diffusion models for each of these.

Following reference (6) ,

— c1(t) = — ( A 1+Q1~~
1)x

1
(t) — 

~1
(t) (3.111)

a \ 
~ 
/x1

t 
\I. 1 I I + Q ~ ( J — ~~(t) (3.112)

\Y(t) / \A 12 A
22/ \x2

(t) /

L ~1II1 L~I I 1 1 1
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where these models can be interpreted as generating the same sample paths

as the forward model. Here ~1(t) is a white noise process with strength -

Q1 and it represents that part of w1(t) that is independent of the future

of x
1
, i.e. x

1
(s), s>t. Similarly, ~ (t) is a white noise process with

strength Q, representing the part of w(t) that is independent of x
1
(s), s>t

and y ( s ) ,  s>t. Because of this difference in the two models ,

1
(t) ~~~1

(t) (3.113)

An equivalent way of looking at this is to view (3.111) as defining

(with 
~l=0) an equation for the best “predictor” , going in reverse time

of x1 given the future of x1. Similarly (3.112 ) gives the best predictor

of x
1 and y given the future of x1 

and ~r. Now although going forward in

time the future of x1 is decoupled from the past of y,  the future of Y

does depend on the past of x1 (see equation (3.95): A
12
=0, but A

21 
need

not be zero) . Therefore , if we want to predict the p~st of x1, the future

of Y does provide us with information (for example, the future history of

position does help us deduce something about the past behavior of velocity).

For this reason, although the (1,2) block of the forward-time dynamics

matrix in (3.95) is zero , the ( 1,2) block of the reverse—time dynamics

matrix in (3.112) is not zero. What this implies is that in reverse time,

x
1 does not represent the state of a subsystem of the global state , and the

extra terms in (3.109) and (3.110) reflect this fact.

- 
-: 

~ - - 
- 
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From (3.103) , (3.108) and (3.112 ) we can evaluate the (1,2) term

of the reverse dynamics matrix:

—1

~i 
+ Tj l 

~~
22 ~i2~ 1~~ 121 

(3.114)

Comparing (3.109) and (3.114), we see that (assuming the invertibility of

~r ’ 
~~~ 

and ~) the last term in K1 will be zero if only if (3.114) is

zero , that is , when x1 is the state of a subsystem both in forward and

reverse time , and this will be true if and only if

— T
1 

= 0 (3.115)

or, equivalently

—l
~~ 

— = 0 (3.116 )
12 1

It is relatively easy to see that this is the case if A21=Q12=0 , since

in that case x
1 
and y are independent. Other , essentially equally

trivial cases can be found in which (3.116) is satisfied, but the con-

dition is quite restrictive.

These observation notwithstanding , (3.lOS) and (3.110) allow us to

A A A

replace X1f and Xir in (3.22) and (3.27) by expressions involving x15

through the use of (3.91)-(3.93). A similar analysis can be performed

for local processor #2 if x
2 

is the state of a subsystem of the global 

-—-- - - - - -~~ - - • 
•

~~~- — - - -- - - - - -
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system (of course the change of basis needed on the global state space

to put the system into a form analogous to (3.95) will in general be

different). Also, we can consider the case of map updating in which we

wish to compute x from x
1~ 

and y2 . These results follow in much the same

manner as those derived in Section 3.2:

x = P (P 1
r + P

1 r + D ~ ] (3.117)
s 2 f f  r r u s

r
f 

= Ffrf 
+ N

1f~1 
+ P~C~R~

1
y
2 

(3.118)

A —1—r = F r + N  x + P C ’R y (3. 119)r r r  ir is r 2 2  2

where D
1
, N

1f S and N1 
are defined in (3.92) and (3.93). These equations

hold whenever L
1f and Lir exist. For example, if x1 is the state of a

subsystem (forward in time), then (assuming that a basis has been chosen

as in (3.95)) (3.92) and (3.93) are computed using M
1=[1 0] and L1f and

defined in (3.105) and (3.110). In this case, some algebra yields

1’ \
P D  = 1 I (3.120 )
sI

— 
,~~ i 

(I \ (0 \ ( 
0

N1f 
— ~Pf

C
2
R
2 
C2 \ T J  \~~i / + 

\A 21+A22
T
1
—T
1
A1/ (3.121)

Nir 
= _P

r
c
~~~~

C
2 ()

+ (Pr~~
’
_ I ) [(  )+ ( (3.122)

T
1 \ 

A21+A22T1—T1A1 /1

L.~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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IV. REAL-TIME SMOOTHING

A variant of the problem addressed in the preceding section is the

real-time smoothing problem. In this case, from some previous pass we

have observed y1(t) over the interval (0,T] and have produced x15(t).

We now observe y
2 
up to time t, and we wish to compute the real-time

smoothed estimate of the global state , i.e. -

~rs (t) = E1x(t)~y1
(T), 0~t~T, ~~~~~~~~~~~ (4.1)

in terms of 
~ls 

and y 2 . This formulation is motivated by problems in

which a second traversing of a track across a random field is taken in

real time and we wish to process the data as we get it. If x
1
=x then

the tracks are identical. If x1 is the state of a subsystem of the global

system, i.e. x’=(x~1Y ’)~ then there are two possible motivations . The

first is that in which-x represents several tracks across the field and

y2 may be data from one of these other tracks . Alternatively , y may

represent the state of a dynamic system which is affected by the field,

modeled by x1, during the second pass . For example x1 might represent

anomalies in the earth’ s gravitational field and y could represent errors

induced in an inertial navigation system aboard a ship (2 , 9 ] .  In this

case we want the (real-time ) estimates of y. Clearly we can also model

in this same way the case in which y contains two pieces , one of which

models additional tracks and the other models the state of a dynamic system

affected by the random field along the second track.

The solution to this problem can be obtained directly from the

results in the preceding section . Specifically , at any time t we can view

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

4
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(4.1) as performing two full passes over [0,T], but at any time t we

— assume that

c2 (s) = H2
(s)=0 t<s<T (4.2 )

Also, since we are attempting to compute x directly using y
2
, we have

essentially a smoothing update problem. Based on these observations (3.31),

(3.22), and (3.27) can be adapted to the present situation :

x = P (p 1
~ + p 1

~ + M ’P 1x 1 (4.3)rs rs f f b b 1].s l s

= ~~~~~ + K
1f~~1f 

+ Pf C2 R; Y 2 
(4.4 )

-

~~~~~ 

= Fb~~ 
+ KlbXlb (4.5)

where Pf 4 P1~~ 
F
f 

and K1f~ are as before , and 
~b 

is the reverse error

covariance for x based on y1 alone :

—l -l ‘—1

~b = -(A+Q~ ~
‘b 

- Pb (A+QI 1’ + Q - PbClRl ClPb (4. 7)

Also

P~~ p 1 
+ p ’ - (4.8)

-A - - PbCjRl
’C

~ 
(4.9)

(P~Mj P~~Q1Pj~ - QM~P1~
]

—l — 1 —l —l —i 
(4.10)

+ ~
PbMj (- Aj_

~ l ~i
11’ir 

- P
b
(_A ’_

~ 
Q]MjPir i~ 

P
bMjP1r

.-

-5— ~~~~~~~~ 5~~~~~~~~~~~~~ k~~~~~~~~~~ —-- - -. ~
—

~
--- -- -----. -- --
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Assuming that we can write

K1f X1f = L1fQ1P1~X1f 
(4.11)

KThX1 = LThQlPi
1xl 

(4.12 )

then , as before , (4 . 3 )— ( 4 . 5 )  become

~rs 
= P (P~~qf + P~~~q~ + E

1~1
] (4.13)

A —iqf = Ffqf + N1fX1 + P
f

C R
2 Y2 

(4.14)

= + N
~~
x
i 

(4.15)

where

E
1 

= M~P1
1 

— P
f
1
L1f 

— P
b
1
Llb 

(4.16)

N1f = _F
f
L
1f 

+ L1f + L1fP15P1~ 
- L1fP15 (A~+~1

Q1
_P
1~
Q1

)P
1~ 

(4.17)

= _F
b
LTh 

- 

~lb 
- LThP1 P

1
’ + LThPl (A1+Pi~

Q
l

)P
i~ 

(4.18)

Again there are several special cases worth mentioning. Suppose

first that x1=x , i.e. that the local and global models are the same

A’A1
, Q~Q1, C1 H1, M1

I, 
~~~~~~~ 

(4.19 )

Then , comparing (3.9) and (4.7) we also have that

— 

~lr 
(4.20)
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This is not surprising, since is the error covaniance for the

estimate of x based on the future of y
1
, P

1 is the covariance of the

estimation error for x
1 based on the future of y

1
, and in this case

x=x~. What (4.19) and (4.20) also imply is that
4

K
~~~

O (4.21)

which in turn implies that 
~~~~~~ Thus there is no backward processing

in this case. Again this is not surprising, since the future data at

time t is just {y
1
(s), s<t}, as y

2
(s), s<t has not yet been collected,

and since x1=x , the future of y 1 has already been processed optimally in

producing x15. Also for this case

K
1f 

= [P f P1~ — I]QP
1~ 

(4.22)

and the real-time smoothing solution is recursive and is given by

x = P P
1
q + (4.23)

rs nsf f is

q
f 

= Ffqf + Pf c;R;
1

1Y 2 
- c2~ 1

] (4.24)

The other important case of interest is that in which x1 is the

state of a subsystem of the global system . Specifically ,  assume that

(3.94)—(3.l03) hold. In this case (3.1l7)—(3.l22) can be adopted to yield

I’ \
P E = 1  I (4.25)
rs 1
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N1f = ~Pf
C~R

1
C
2 (
~

) + (~~l+A:1+A22 T1 T1Al) 
(4.26)

—l
N
lb 

= 

~~~ 
—I) 0 

(4.27)

-T1+A21+A22 T1-T1A1)

Equations (4.13)—(4.l5), (4.25)—(4.27) define the algorithm for

real—time smoothing. Note that the new data (y2) is processed only

forward in time, while the reverse processing could be precomputed, since

it only involves x1 . The interpretation of this reverse processing

deserves some comment. Of course it is zero if x
1=x . What it does

represent essentially is a reconstruction of the reverse filtered estimate

of x based only on y
1, given the reverse filtered estimate Xlr 

of

based on y
1. This is very much like what was discussed in Section 2.3

when one wishes to reconstruct the unobservable feedforward part of x

from the filtened estimate of the observable part x
1. However there is

a difference because , as mentioned in Section 3.3 , x1 is not a substate

of x in reverse time. If it were, then given X1r~ 
the top block of

would have to be zero, since the best estimate of x 1based on the future

of y
1 

would have to be 
~~~~~~~~

. However the first part of N~~ is not zero ,

reflecting the fact that the reverse dynamics for x
1 alone are different

from those when x1 is viewed as some set of the components of x. In the

latter case , x1 is not a Markov process in reverse time . 

i _  - ----- --55--- -~~ ~~- 5— - - -
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V. DISCUSSION

In this paper we have considered the problems of combining

estimates obtained from several separate data sources which have been

processed individually and of updating an estimate as another source of

information becomes available. In Section II we examined the causal

version of this problem and have obtained a solution under very general

conditions. Basically, the only restriction on the local processing is

that the model on which it is based have as many degrees of freedom as

there are in the observations that are to be processed locally. We

discussed the potential utility of these results for distributed imple-

mentation of Kaiman filters and for efficient transmission of information

from local processors to a central processing facility.

Several directions for further work are suggested by the results of

Section II. The first is in decentralized estimation. Consider the

situation in which the local models x
1 and x2 represent different pieces

4 of the state x. In general these pieces will be coupled, although the

local processors assume that there is no coupling. Given that the global

processor does take this coupling into account, is there an efficient

distributed fashion in which each local estimate can be corrected using

the estimate produced by the other local processor? If the coupling

between x1 and x
2 
is weak, is there some asymptotic description of this

correction ? What if there are different time scales? For example, suppose

the local processors estimate fast and slow states but all that is wanted

globally is an estimate of the slow global states. The results in (10—12]

on multiple time scale estimation, combined with our framework sho~4d

provide the basis for a solution to such a problem.

-~~~~~~~~~~~~~ -5 ~~~-~~~~~~~~~- —- -5p”
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A second problem suggested by Section II is that of efficient dis-

tributed implementation of Kaiman filters. Two types of issues enter

here: (1) the amount of computation that is done by each local processor;

and (2) the efficient transmission of information to the central processor.

If in fact the only issue were the second one, then the answer would be

that each processor should whiten the observed data y~ and transmit the

result. In other words, each local processor should build a global

Kaintan filter and transmit the resulting innovations. Remember that the

local Kalman filter innovations will not be white because of discrepancies

between local and global models. Given that there are constraints on the

amount of computation that can be performed locally , the question of what

to transmit is a complex one. Specifically , given communication capacity

and local computation constraints the problem becomes one of what local

processing and subsequent data transmission scheme is best in the sense of

degrading the global estimate as little as possible. Our results may provide

one perspective from which we can make inroads into this very difficult

problem.

In Sections III and IV we considered noncausal versions of the

combining and update problems . These results are of potential use in some

mapping problems . In addition, they raise as many question as they answer. —

Specifically, the noncausal estimate combining problem does not always

have a solution . The reason for this is that the noncausa l local process ing

may lose some information that is needed for the global processing. We

presented several important cases where this does not happen, but the issue

___________  
I   
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remains of characterizing precisely what information from the raw data

y . ( T ) , O<t<T , is preserved in the local smoothed estimate history

0-(-r<T.

Beyond this there remains the issue of interpreting the results of

Section III and IV. The very simple form of the solution in some cases,

such as in (3.65) and (3.66 ) suggests that there must be a simpler
— 

derivation and interpretation of our results than the one we have given .

For example, the framework of scattering theory (13] may provide the

machinery necessary to simplify our analysis and add to our insight. Also,

as suggested in the text reference to (3.65) and (3.66), one interpretation

of our map updating results is that the second pass data are used to

estimate the map errors from the first pass. The fact that we have been

able to determine how this ~an be done using two recursive systems (one

causal and one anticausal) suggests that this second pass processing is

based on a recursive model for the map errors. This suggests the notion

of conditional stochastic realizations, which at this time remains as j ust

a notion. The development of substance for this notion map provide the

basic insight needed to understand our results from first principles.

Finally, there is the extension of our map updating formulation to

more general scenerios (non-parallel tracks, point measurements as well as

tracks) and more general random field models. As we have discussed in

Section III, the resulting problems will probably be infinite dimensional

in nature. While this is a technical difficulty , it need not be a conceptual

one . The results we have obtained and the notion put forth of realizations

~~~~~~~ ~~~~~~~ _~~~~~~~~~~~~~~~_  
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for map error fields should be useful in general. In addition, our

results should directly carry over to discrete 2-D fields , in which case

the generalization to more general scenarios need not be as difficult

technically . The development of a more general theory for the efficient

assimilation of spatially-distributed data , either in continuous- or

discrete-space , is an extremely important problem with a myriad of potential

applications. It is our hope and feeling that our results have provided

some concepts that can be useful in developing that theory .

_    
_ _
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